Comment on “Approximation algorithms for quadratic programming”

نویسندگان

چکیده

The radius of the outer Dikin ellipsoid intersection m ellipsoids due to Fu et al. (J. Comb. Optim., 2, 29-50, 1998) is corrected from $$\sqrt{m^2+m}$$ . approximation bound for general convex quadratic constrained nonconvex program correspondingly corrected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Algorithms for Quadratic Programming

We consider the problem of approximating the global minimum of a general quadratic program (QP) with n variables subject to m ellipsoidal constraints. For m = 1, we rigorously show that an-minimizer, where error 2 (0; 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is a polynomial in n, m, and log(1==). For m 2, we present a polynomial-time (1 ? 1 m 2)-a...

متن کامل

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming

Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe two algorithms that find an -approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The running time of the proposed algorithms is polynomial in the size of the problem and in 1/ , provided ...

متن کامل

Quadratic Outer Approximation for Convex Integer Programming

We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same Hessia...

متن کامل

Algorithms for Quadratic Fractional Programming Problems

Consider the nonlinear fractional programming problem max{f(x)lg(x)lxES}, where g(x»O for all XES. Jagannathan and Dinkelbach have shown that the maximum of this problem is equal to ~O if and only if max{f(x)-~g(x) IXES} is 0 for ~=~O. 1 t t Based on this result, we treat here a special case: f(x)=Zx Cx+r x+s, g(X)=~ xtDX+ptX+q and S is a polyhedron, where C is negative definite and D is positi...

متن کامل

Genetic Algorithms for Binary Quadratic Programming

In this paper, genetic algorithms for the un-constrained binary quadratic programming problem (BQP) are presented. It is shown that for small problems a simple genetic algorithm with uniform crossover is suucient to nd optimum or best-known solutions in short time, while for problems with a high number of variables (n 200) it is essential to incorporate local search to arrive at high-quality so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Optimization

سال: 2022

ISSN: ['1573-2886', '1382-6905']

DOI: https://doi.org/10.1007/s10878-022-00881-y