Comment on “Approximation algorithms for quadratic programming”
نویسندگان
چکیده
The radius of the outer Dikin ellipsoid intersection m ellipsoids due to Fu et al. (J. Comb. Optim., 2, 29-50, 1998) is corrected from $$\sqrt{m^2+m}$$ . approximation bound for general convex quadratic constrained nonconvex program correspondingly corrected.
منابع مشابه
Approximation Algorithms for Quadratic Programming
We consider the problem of approximating the global minimum of a general quadratic program (QP) with n variables subject to m ellipsoidal constraints. For m = 1, we rigorously show that an-minimizer, where error 2 (0; 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is a polynomial in n, m, and log(1==). For m 2, we present a polynomial-time (1 ? 1 m 2)-a...
متن کاملOn Approximation Algorithms for Concave Mixed-Integer Quadratic Programming
Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe two algorithms that find an -approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The running time of the proposed algorithms is polynomial in the size of the problem and in 1/ , provided ...
متن کاملQuadratic Outer Approximation for Convex Integer Programming
We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same Hessia...
متن کاملAlgorithms for Quadratic Fractional Programming Problems
Consider the nonlinear fractional programming problem max{f(x)lg(x)lxES}, where g(x»O for all XES. Jagannathan and Dinkelbach have shown that the maximum of this problem is equal to ~O if and only if max{f(x)-~g(x) IXES} is 0 for ~=~O. 1 t t Based on this result, we treat here a special case: f(x)=Zx Cx+r x+s, g(X)=~ xtDX+ptX+q and S is a polyhedron, where C is negative definite and D is positi...
متن کاملGenetic Algorithms for Binary Quadratic Programming
In this paper, genetic algorithms for the un-constrained binary quadratic programming problem (BQP) are presented. It is shown that for small problems a simple genetic algorithm with uniform crossover is suucient to nd optimum or best-known solutions in short time, while for problems with a high number of variables (n 200) it is essential to incorporate local search to arrive at high-quality so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Optimization
سال: 2022
ISSN: ['1573-2886', '1382-6905']
DOI: https://doi.org/10.1007/s10878-022-00881-y